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NEARLY KAHLER MANIFOLDS

ALFRED GRAY

1. Introduction

Let M be a C* almost Hermitian manifold with metric tensor <, >,
Riemannian connection V/, and almost complex structure J. Denote by (M)
the real valued C= functions on M, and by Z(M) the C= vector fields of M.
Then M is said to be a nearly Kiihler manifold provided F 4(/)(X) = 0 for all
X ¢ Z(M). Examples of nearly Kihler manifolds which are not Kéhlerian are
S¢ (with the canonical almost complex structure and metric), and more
generally G/K, where G is a compact semisimple Lie group and K is the fixed
point set of an automorphism of G of order 3 (see [20]). If dim M < 4, then
M is Kihlerian [12]. Thus we henceforth assume dim M > 6.

A nearly Kdhler manifold has the following property. Let p € M and let 7
be a (piecewise differentiable) loop at p. Denote by <, the parallel translation
along 7, and let = be the holomorphic section of the tangent space of M at p
which contains y/(0). Then there exists ge U(n) such that ¢, |z = g| =, where we
regard U(n) as the structure group of the tangent bundle of M. Conversely it
is easy to see that any almost Hermitian manifold with this property is a nearly
Kihler manifold. We say that U(n) is a weak holonomy group of M. In a
subsequent paper we shall investigate weak holonomy groups G for which G
is transitive on some sphere. The most interesting situation occurs when
G = U®).

We show in this paper that many well known theorems about the topology
and geometry of Kihler manifolds can be generalized to nearly Kihler
manifolds. The key fact is that the curvature operator Ry (X, Y ¢ £(M)) of
a nearly Kahler manifold satisfies certain identities described in §2. These
formulas resemble the corresponding formulas for Kihler manifolds sufficiently
for us to carry over the proofs with a few changes.

In §3 we generalize some formulas of [6] and [9] about holomorphic
curvature to nearly Kéhler manifolds. Furthermore, we define and discuss the
properties of a particularly nice class of nearly Kdhler manifolds, namely those
of constant type. Pinching of nearly Kéhler manifolds is discussed in § 4.

We observe in §5 that a compact nearly Kihler manifold of positive
holomorphic sectional curvature is simply connected. Furthermore a complete
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nearly Kihler manifold whose holomorphic sectional curvature is positive and
bounded away from zero is compact.

In § 6 and § 7 we discuss the cohomology groups H?:4(M) of a nearly Kahler
manifold and generalize results of [2], [6], [7] and [9]. We prove in §6 that
for a non-K#hlerian nearly K#hler manifold M whose sectional curvature
satisfies a certain positivity condition we have H“'(M) = 0 (Theorem (6.2)).
Then in § 7 we show that if the Ricci curvature of M satisfies a positivity
condition we have H?%(M) = H%?(M) = O for p > 0 (Theorem (7.1)). Even
though H"'(M) = H>*(M) = H**(M) = 0 for a compact nearly Kdhler manifold
M, it is conceivable that H*(M, R) # 0. Nevertheless, we show that if a non-
Kidhler manifold has sufficiently large sectional curvature (or holomorphic
pinching), we have H*(M, R) = 0.

§ 8 is devoted to the proof of the following generalization of a theorem of
M. Berger [3]: Let M be a compact Einstein nearly Kdhler manifold of
constant type. If M has positive sectional curvature and nonnegative
holomorphic bisectional curvature, then either M is isometric to complex
projective space or to S°. (See also [9].) In §9 we determine differential forms
which represent the Chern classes of a nearly Kéhler manifold, or more generally
any almost Hermitian manifold. Finally in § 10 we discuss immersions of
nearly Kdhler manifolds and generalize some results of [7], [8], and [11].

In connection with the results of §8 we wish to make the following
conjecture: If M is a compact nearly Kihler manifold with positive sectional
curvature, then M is isometric to complex projective space or to §°. It should
at least be possible to prove this under the assumption that M has constant
Ricci scalar curvature. For Kdhler manifolds this was obtained in [5].

2. Curvature identities of nearly Kahler manifolds

In [11] we showed that the curvature operator Ry, (X, Y € £'(M)) of a nearly
Kihler manifold satisfies the identities

(1) <RXYXa Y> - <RXYJX: ]Y> = HVX(])(Y)HZ ,
( 2) <RWXYa Z> = <RJWJX]Ya ]Z> )

for W,X,Y,Z e (M).
We give a generalization of formula (1) which will be useful.
Proposition (2.1). For all W, X,Y,Z ¢ Z(M) we have

(3) RwxY,Z> — (RyxlY,IZy = T wUNX),Fy(I)Z)> .
Proof. Linearization of (1) together with the first Bianchi identity yields
3RwxY,Z> — RyyIX,JZ) + (RyzIX,JY) — 2{Rw4IY,IZ>
(4) = FwX),Vx N2y — FwUD), VDY)
+ 2w (N(X), Fy(N(D)> .
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We replace Y and Z in (4) by JY and JZ and subtract the result from (4).
Since V(DY) + V,;5(DUIV) = 0 for all U,V ¢ (M) [10], we obtain, after
some simplification,
AV X)), Vy(UN2)) = 5{RwxY, Z)
— 5RyIY,JZ> — Ry;xdY,Z> — {Ryw;xY,1Z> .

In (5) we replace X and Y by JX and JY, and add 1/5 of the resulting equation
to (5). We then obtain (3).

Recently Goldberg and Kobayashi [9] have introduced the notion of
holomorphic bisectional curvature for Kahler manifolds. Actually it is possible

to define the holomorphic bisectional curvature By, for any almost Hermitian
manifold. Thus if X, Y e Z(M), and || X|| % 0 = ||Y||, then we set

BXYHXHZHYHZ = <RXJXY> JY> .

(5)

In particular, if M is nearly Kahlerian, it follows from (1) that when X,JX,
and Y are linearly independent,

(6) BxylXIPIY P = Kgr| X A YN + Kegp [ X AJY P = 2117 x(DD)IF,

where K, denotes the sectional curvature of M of a field of 2-planes spanned
by X and Y.
From (6) it follows that the Ricci curvature k of M is given by the formula

KX, Y) = §n1{<RXJYEi7JEi> + 2 x(UNED, Vy(UNEDD}

where X,Y ¢ (M) and {E,, -- -, E,,JE,, - - -, JE,} is a frame field defined on
an open subset of M.

The holomorphic sectional curvature H(X) of M is defined by H(X)| X |*
= (Ry;xX,JX> wherever X ¢ (M) is nonzero. Obviously H(X) = Byy.
Also, for convenience we write Q(X) = (Ry,;xX,JX) for X ¢ F(M). The
antiholomorphic sectional curvature of M is the sectional curvature of M
restricted to fields of 2-planes spanned by vector fields X and Y for which
X, Y>=UX, Y, =0.

Let m ¢ M, and denote by M,, the tangent space of M at m. Each of the
tensor fields defined in this section gives rise to tensors on M,, which we denote
by the same letters.

We next generalize some results of [4], [6].

Proposition 2.2. Assume M is nearly Kdhlerian, and let x,u e M,,,m ¢ M.
Then

) <&Mm>=§pmx+m»+wu—hO—Qu+w—Qu—w

—wm—ww+%mmwh
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@) (R ,u Juy = 1l6{Q(x 4 Tu) + QG — Ju) + O(x + u) + Ox — w)
— 40(x) — 40(w)}) — %nn(n(wuz .

Proof.. This is a verification using (1) and (2).

As an immediate consequence of these formulas, we obtain the following
corollary.

Corollary (2.3). Assume M is nearly Kidhlerian, and let x, u ¢ M,, be such
that ||x]| = ||lull = 1 and {x,u> = cos ¢ > 0, {x,Jup = cos @ > 0. Then

i) K,, = %{3(1 +cos )’H(x + Ju) + 3(1 —cos )*H(x — Ju) — H(x + u)

— H(x — u) — H(x) — H@w)} + %HVI(J)(u)HZ, if {x,uy=0;

G) B,, = %{(1 ¥ cos OPH(x + Ju) + (1 — cos O)H(x — Ju)
+ (1 +cos@)*H(x + u) + (1 — cose)lH(x — u) — H(x) — H(u)}
— S IP.w

Now let x, u ¢ M,, be orthonormal vectors with {x,Ju> > 0; then x and y
span a plane /7 in M,,. The average holomorphic curvature H(x,u) and the
average antiholomorphic curvature A(x, u) of this plane (see [6]) are given by
the formulas

H(x,u) = 1 fﬂH(x cos ¢ + usin a)de ,
T
o]

1 z
A(x’ u) - — chosa+usina,—J:c sin a+Ju cos adw -+
T
0

These formulas are independent of the choice of x and u in the plane /.
Proposition 2.4. If x,u e M, are orthonormal, and {x,Ju> = cos 8 > 0,
then we have

K, = H(x,u) — 3A(x, u) sin* 6 — 3|7 (D) |

= %{(1 + cos O)H(x + Ju) + (1 — cos )*H(x — Ju)}

— A(x,u)sin? g — %IIVI(J)(H)H2 .
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The proof is a slight modification of a result of [4] for Kdhler manifolds,
and so we omit it.

3. Nearly Kihler manifolds of constant holomorphic curvature

We first prove the following result.

Proposition (3.1). Let x ¢ M, be a unit vector at which the holomorphic
sectional curvature H assumes its maximum at m. Then for all y e M, with
(x,yy = {Jx,y> = 0and ||y|| = 1, we have

H(x) > 3(R,,x, ¥) + {Ruzyx, Iy — 3P DM -

If H assumes its minimum at x, then the inequality is reversed.
Proof. Let a and b be real numbers with a> + b = 1. A calculation shows
that

H(ax + bly) + H(ax — bly) — 2a'H(x) — 2b*H(y)
= 4a2b2{<RzJJ:y’ J}’> + <Rzy-xa }’> + <Rzny, Jy>}
= 4a?b"3(R %, ¥) + Rupy%: Jyy — 3P (DO .

If H assumes its maximum at x, then

(1 — aYH(x) > b*H(Y) + 28 {3{R %, > + (R, 7, %, Iy> — 3|F DD},
and so

(1 + adHx) = B’H() + 28*(3<R,,x,¥) + {Rop%, Iy — 3|V ADOI} .

We get the proposition by taking a = 1 in this equation.
Corollary (3.2). Let x,y satisfy the hypotheses of Proposition (3.1). If the
holomorphic sectional curvature H assumes its maximum at m, then

H(x) = 2R 12y, Iy) + |V (DD .

If H assumes its minimum at x, then the inequality is reversed.

We now prove a related result which generalizes a result of [6].

Theorem (3.3). Let M be an almost Hermitian manifold whose curvature
operator satisfies (2), and assume that M has nonnegative holomorphic
sectional curvature. Then the 4-dimensional sectional curvature K,(P) of a
4-dimensional subspace P & M., which is holomorphic (i.e., P is spanned by
orthonormal vectors x,y,Jx,Jy) is nonnegative.

Proof. Let xe P be a unit vector such that the holomorphic sectional
curvature assumes its maximum on the unit sphere of P. Just as in [6] there
exists ye P such that {(x,y> = <{x,Jy> =0, |ly|=1, and {R_x,Jy> =
{Ryzdx,1y> = 0, etc. Then the 4-dimensional sectional curvature K,(P) is a
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positive scalar multiple of

KJ:JJ:Kg/Jz/ + Ka:‘yz + I<a:./"y2 + <R1‘J_1:y> Jy>2 + <Rzg/"x5]y>2 + <R.7:Jnya y>2 .

Hence K,(P) > O.

Next we consider the case when the holomorphic sectional curvature H(x)
of a nearly Kdhler manifold is constant.

Proposition (3.4). Suppose the holomorphic sectional curvature H of M

has the constant value y at a point me M, and let x,u ¢ M,, with |x|| = ||u|
= 1. Then

(i) K, = %{1 + 3dx, ' + %HVI(J)(u)H2 , if {x,up =0
(i) B,, = %{1 + xouwt 4+ x,u)f — %HV,(J)(u)HZ .

Proof. Write u = ax + bJx 4 cy where |y|| =1 and {x,y> = {Jx,y> =0;
then @ + b* 4 ¢® = 1. Since H is contant at m, (R ;. x,¥> = (R, ,;.Jx,y> = 0.
Also, by Proposition (3.1) we have

Roto3) = R dyy = 2l + 3IPLDO -

Therefore
<R1‘u-x, u> == sz(x) + cz<Rl“y'x’ y>
2
— b2‘u + %{‘u + 3]|VI(J)(}’)”2}

(7) _ g2 2 _3__ 2
=L —d+ 3% + 4HVI(J)(u)II

= £(1 oyt + 3wy + %HVI(])(M)HZ .

Hence (i) and (ii) follow easily from (7).

The following notions will be useful.

Definitions. Let M be an almost Hermitian manifold. Then M is said to
be of constant type at m ¢ M provided that for all x ¢ M,, we have |[F (1)()]
= |[F.(D@|| whenever {x,y> = {Jx,y> =<x,z) ={Jx,z> =0and ||y| =] z|.
If this holds for all m ¢ M we say that M has (pointwise) constant type. Finally,
if M has pointwise constant type and for X, Y ¢ Z(M) with (X, Y> = (JX,Y)
= 0 the function |[F;(J}Y)| is constant whenever | X|| = ||Y]{| = 1, then we
say that M has global constant type.

The proof of the following proposition is easy, and so we omit it.
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Proposition (3.5). Let M be a nearly Kihler manifold. Then M has
(pointwise) constant type if and only if there exists « ¢ % (M) such that

(8) WwMX I = | WIFIIXI* — W, X5 — W, IXD

for all W, X ¢ Z(M). Furthermore, M has global constant type if and only if
(8) holds with a constant function a.

We agree to call « in (8) the constant type of M. It is unknown to the author
whether if M has pointwise constant type then M has global constant type. A
similar statement applies to holomorphic sectional curvature. The only example
known to the author of a nearly Kdhler manifold of constant holomorphic
sectional curvature which is not K#hlerian is S°.

Proposition (3.6). Let M be a nearly Kihler manifold with pointwise
constant holomorphic sectional curvature p and pointwise constant type a.
Then

(i) M is an Einstein manifold with 4k(x,x) = (n + 3)p + 3(n— 1)a,
where x is a unit vector and dim = 2n,

(ii) at each point M has constant antiholomorphic sectional curvature
(¢ + 3a)/4.

Proof. This follows easily from proposition (3.4).

4. Pinching of nearly Kihler manifolds

In this section we generalize the results of several authors [2], [4], [5], [6]
to nearly Kéhler manifolds. The curvature of a nearly Kédhler manifold can be
pinched in at least six different ways. In order to describe these, we first
consider a sequence of conditions. Let 0 < 7 < 1, and let M be a nearly
Kihler manifold. For each of the conditions listed below, L denotes some
number depending on M and 7.

R(p: 7L < K, < L for linearly independent x, u ¢ M, for all me M.
H(p): 7L < K. ;, < L for nonzero x ¢ M, for all me M.
BH(p): 7L < B,, < L for nonzero x,u e M, for all m ¢ M.
BS(p): 7L < K., + K, < L for linearly independent x, u, Jx, Jue M,
for all me M.

K(p): LA + 30x, 1)) < K, — %HVI(J)(u)HZ < LA + 3x, 1))

for x,ue M,, with ||x|| = |lu]| =1, {x,u> =0, for all me M.
BKG): gL + 5w + 610 < Bay + L I7D@F

< LA + &x,wt + dx,wph
for x,u e M, with |jx]| = ||u}| = 1 for all m ¢ M.
For C = R,H,BH, BS, K, BK we say that M is § C-pinched it and only if
d = lub {n|C(y») holds}. Here R stands for Riemannian, H for holomorphic,
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BH for biholomorphic, BS for bisectional, K for Kihlerian, and BK for
bi-Kihlerian. '

One problem with these pinchings is to determine the relations among them;
another is to obtain bounds for the Ricci and Ricci scalar curvature in terms
of the various pinchings. We determine some of these relations and bounds.
For later applications we shall be particularly interested in determining the
values of § for which a § holomorphically pinched manifold has nonnegative
biholomorphic pinching and positive bisectional pinching.

It is clear that since we are dealing with nearly Kahler manifolds, the size
of |V (D) will be important in the pinching estimates. For this reason we
shall say that a nearly K#hler manifold satisfies condition T(p,s) provided
that pH(x) < |[F (| < oH(x) for x,y e M,, with |x|| = [ly]| =1, {x, )
= {Jx,y> =0forall me M.

Proposition (4.1). Let M be a nearly Kihler manifold which satisfies
condition T(p,a). If M has nonnegative holomorphic bisectional curvature,
then 0 < p<o<1.

Proof. This is a consequence of Corollary (3.2).

We first determine bounds on the sectional curvature in terms of holomorphic
pinching. Assume in Propositions (4.2)—(4.4) that A has holomorphic pinching
§ and that 6L < H(x) < L for nonzero x € M, for all m e M. Also suppose
that condition T'(p, ¢) is satisfied. Denote by x, u ¢ M,, orthonormal vectors
with (x, Juy = cos § > 0, and let x, Jx,y, Jy be orthonormal.

Proposition (4.2). (i) We have

%(25 + 25cos’0 — DL + (-% + %psinz 0)H(x)
<K, < %(2 + 2costd — BL + (—% + %asinzﬁ)H(x) .

(ii) Ifosin’d < 1/6, then

1 3

3 3 .
=0 Zdcostfd — — + = smzﬁ)L
(4 t 3 > tgf

3 3 1 3 .
<K< (Z + Zcoszﬂ — 76 + 750 sin? 0)L.

(i) If psin?’6 < 1/6 < osin® G, then

1 3
7t
3
8

3 3 .
354 S5costd — sin? 0)L
(4 t 3 P

3

3 3 .
< K,, < —costfd — =0+ = smzﬁ)L.
<K, _( + 4cos 3 + 40
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(iv)y If psin*@ > 1/6, then

5 3 3 3. .
254 3scost9— 2+ 35 51n26)L
(8 LS A T
gKMg(%—}—%cosZﬁ—%&—}——i—osinzﬁ)L.
Proof. (i) follows from Corollary (2.3), and (ii), (iii), and (iv) follow from
Q.
Corollary (4.3). (i) We have
3 3) ( 1 3)
25— 2J|L —= 4+ Zp|Hx
(4 g)L T \—g + ge)H®W
3 3) ( 1 3)
<k, <235+ (-1 3B0.
< m,_<4 3 + 8+40 (x)
(i) If o < 1/6, then
3 1 3) (3 1 3 )
S 1 i 30L<k, < (2 - s+ 2alL
(4 >t P v 0t 7
Gii) Ifp<1/6 < o, then
3 13 ) (5 3 3 )
S L3 L<k, < (2 354+ 36\L.
(4 R e i
(iv) If p>=1/6, then
5 3 3 ) (5 3 3)
P53 13 8L<k,, < (2~ 354 35\
(8 g PPl Ras{g g0t e

We give another set of bounds for the sectional curvature which sometimes
are better than those of Proposition (4.2).

Proposition (4.4). (i) We have

(5 — (% + %5)sin20)L + (% — %o) sin®* § H(x)
<Ku<(1 —(% + %6)sinzﬁ)L + (% — %p) sin? 6 H(x) .

(i) If o < 1/10, then

(5 - %(3 + 503) sinze)L <K, < (1 _ %(35 + 50) sinze)L .
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(i) If p< 1/10 < o, then
(5 _ %(5 + 6+ 100) sinzﬁ)L <K, _<_(1 - %(35 + 5p) sinza)L .
@iv) If p > 1/10, then

(5 _ _;_(5 1 5 + 100) sin? 0)L

<K, < (1 - %(1 + 56 + 10p8) sin® 6)L .

Proof. (i) follows from Proposition (2.4) and Corollary (4.3); (i), (iii),
and (iv) follow from (i).

Corollary (4.5). If the holomorphic sectional curvature of a nearly Kihler
manifold M is nonnegative, then at each point of M, a maximum sectional
curvature is holomorphic.

This generalizes [6, Theorem 8.2].

Next we obtain bounds on the holomorphic bisectional curvature in terms
of holomorphic pinching. We use the conventions of Propositions (4.2)-(4.4),
except that we assume that ||x|| = |#}| = 1 and <{x,u> = cos¢p > 0, {x,Ju)>
= cos # > 0. These new conventions remain in effect throughout the rest of

§4.
Proposition (4.6). (i) We have

(5 — % + %5(coszﬁ + cost? go))L - (% + % — %(COSZQD + cos? 0)a)H(x)
< B,, < (1 — %5 + %(coszﬁ + coszga))L

— (% + g — _;_(coszga + cos’ 0)p)H(x) .

. 1 g 1 )
g — — — 2% 4+ 20 ? os? )| L
(ii) ( > 3t 2( +a)(c§Sgo+c )
1 1 1 \ ,
< B, < 1—75—5p5+_2—(1+p5)(cos ¢+ cos’d)| L .

Proof. (i) follows from Corollary (2.3), and (ii) from (i).

Corollary (4.7). If M is a nearly Kihler manifold for which the holo-
morphic pinching 6 > (1 + ¢), then M has nonnegative holomorphic
bisectional curvature.

Proof. From Proposition (4.6) we have

B,,>0—1/2—4/2>0.
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Proposition (4.8). Suppose M is a nearly Kihler manifold with holo-
morphic pinching & which satisfies

§>1/Bp+2, ifpgL1/3,
&> 1/p + 2), ifp>1/3.

Then K, + K, > 0, i.e., M has positive bisectional pinching:
Proof. We have

K,y + Koy > sin? oKy + sin® 6K ;.

> (5 - % + %@)L + %51,(1 — 3p)(cos* 8 + cos'g) .
If p< 1'/3,> the right hand side of (9) is nonnegative, and so in this case,

Ko + Kopy > (5 — % + % pa)L. Hence 5> 1/(3p + 2) implies K, + Kyau

> 0. On the other hand, if p > 1/3, then Koy + Kyuow > (5 — %+ —;-pﬁ)L

+ %51,(3,; —1) = (%5 _ % + 3p5)L. Thus if 5 > 1/(6p + 2) we again
obtain K, + K., > 0.
Corollary (4.9). Let M be a nearly Kihler manifold which satisfies

condition T(p, o) with ¢ > 0. If M has holomorphic pinching § > %(1 + a),

then B,, > 0 for nonzero x,ueM,, and K, + K;,, > 0 for linearly
independent x,u,lx,JueM,,.

Proof. We may take p = 0 in Proposition (4.8). The corollary now follows
from Propositions (4.7) and (4.8).

We next obtain bounds on the Ricci curvature of a nearly Kihler manifold
in terms of the holomorphic pinching. These will be useful in § 7. First we
need the following estimates.

Proposition (4.10). We have

1 3) 1
s— L i35 1m
( Z 5P 7 @
ngy+ng(1—l5+ io)L—lH(x).
172 4

Proof. This is a consequence of Corollary (2.3).
We now estimate the Ricci curvature.

Proposition (4.11). Let x e M, be a unit vector and dim M = 2n. Then
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%{——(n — 1) + 4 — 1) + 6(n — s} — %(n — HHE)
< kn,x) < %{—(n 18+ 4 — 1) + 6(n — 1o} — %(n — SHG) .

Proof. This is an easy consequence of Proposition (4.10).
Proposition (4.12). Let dimM = n.
(i) If n< 5, then

_411_{(3;1 + 18+ 6(n — 1)ps — (n — DL
< k(x,x) < %{(3;1 + 1) — (n— 15 + 6(n — Do} .
@) If n> 5, then
{(n — 15 + %(n — 1)05 — %(n —3lL
<kxH< -1+ %(n — Do — %(n—3)6 L.

Proof. This follows from Proposition (4.11).

We now prove some results about Riemannian pinching of nearly Ki#hler
manifolds.

Proposition (4.13). Suppose M is a nearly Kihler manifold which satisfies
condition T(p,0), and assume M has Riemannian pinching 1. Then 1 <

%(1 + 34).

Proof. We may normalize the metric of M so that 2 < K,,, < 1 for all
linearly independent x,ue M, for all meM. Let x,y,Jx,JyeM, be
orthonormal. A result of [1] implies that |(R,;,¥,Jy>| < 2(1 — 2)/3. Hence
2<K,, + K,;, <2/3—-52/3+ 20andso < (1+ 30)/4.

Proposition (4.14). Suppose M is a nearly Kdhler manifold which satisfies
condition T(p, ¢), and assume M has Riemannian pinching 2 < 1 and holo-
morphic pinching 3. Then

0> QA+ 82+ 9%~ 180)/(1 — D) .

Proof. We normalize the metric of M as in Proposition (4.13). Let
x,v,Jx,Jye M be orthonormal. A result of [2] which is valid for all
Riemannian manifolds implies that

3<Rszy,]y> S Z(Kxe - X)I/Z(Ky‘ly - 2)1/2 + sz + Ksz - 22 »
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and so
K,, + K7y, + 2= 3|V DN < Kpgp — WKz — D
Since K, > 4, K,;, > 4, K, ;,, < 1, and |/ ()P} | < o, we have

32 — 0) < (Kpyp — DVH(A — D2,

from which follows the proposition.

Proposition (4.15). Suppose M is a nearly Kdhler manifold with constant
positive  holomorphic sectional curvature p aud nonnegative holomorphic
bisectional curvature. Also assume that M satisfies condition T(p,a). If 2
denotes the Riemannian pinching of M, then

42>1+4 3p.

Hence if p > 0 and M is compact, then M is homeomorphic to S°.
Proof. Let me M, and let x,ue M, be orthonormal. Write cos?f§ =
{Jx, u>*. Then by Proposition (3.4) we have

%{1 + 3(cos? 8 + psin? )} < K, < %{1 + 3(cos’§ + osin?4)} .

Since 0 < p < ¢ < 1, we have

p( +30)/4 <K, < g

Hence the proposition follows.

5. Simple connectivity and compactness of nearly Kihler manifolds

In this section we generalize some results of Tsukamoto [18]. The proofs
are essentially the same as those for Kihler manifolds. ,

Theorem (5.1). Let M be a compact nearly Kdihler manifold of positive
holomorphic sectional curvature. Then M is simply connected.

Proof. Assume the contrary. Then there exists a non-trivial free homotopy
class of loops which contains a non-trivial minimal geodesic 0. We may assume
that ¢ has unit speed and is defined on [0, b]. Denote by ¢’ the velocity vector
of ¢. Since M is nearly Kihlerian, Jo’ is parallel on ¢. The deformation of ¢
given by Jo’ has second variation

106, 16") = — f "K..,.(Hdt <0 .
o

Thus ¢’ cannot be a minimal geodesic. Hence M is simply connected.
It would be interesting to know if in Theorem (5.1) the assumption of
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positive holomorphic curvature could be replaced by that of positive Ricci
curvature. This would be a natural generalization of a result of Kobayashi [15].

We remark that there exist compact non-simply connected nearly Kihler
manifolds with nonnegative sectional curvature which are not Kihlerian. An
example is P7 X P7 (see [20]), where P denotes the real 7-dimensional pro-
jective space. On the other hand, in [19] it is shown that compact homogeneous
almost complex manifolds of positive Euler characteristic are simply connected.

Theorem (5.2). Let M be a complete nearly Kihler manifold whose
holomorphic sectional curvature satisfies K, ;, > 8 > 0 for x e M,, and all
m e M. Then M is compact and the diameter of M is not greater than x|+ 5.

Proof. Let p,qe M. Since M is complete, there exists a unique unit speed
geodesic ¢ defined on [0, b] from p to g. Then J¢’ is parallel on ¢. Let X be

the vector field on ¢ defined by X(f) = (sm T) J&'(f). The deformation of ¢

given by X has second variation

10X, X) = f X — (R, X, o)

< f {— cos? —— m — g sin? Zt}dt

< b(z/b* — 3) .

T
Vo

any two points are connected by a unique geodesic, the theorem follows.

6. Harmonic forms on nearly Kiihler manifolds

Let M be any manifold with an almost complex structure J. We can
decompose F(M) & C as

EMKKC= 7, ®F_, where
Fa={XeZMQC|IX = +iX} .

Definition. Let w be a differential form (possibly complex) on an almost
complex manifold M. Then w is said to be of bidegree (p, q) if and only if w
is of degree p + g and w(X,, - -+, X,,,) = 0 whenever more than p of the X;
are in ¢ _, or more than g of the X are in 7 ,,.

This generalization of the notion of (p, g) forms from complex manifolds to
almost complex manifolds is due to Kozul [17]. If w is a (p, @) form, then in
general do has components which are (p — 1,9 4- 2), (p,q+ 1), (p + 1, 9),
and (p + 2,9 — 1) forms.



NEARLY KAHLER MANIFOLDS 297

We shall need the following lemma.

Lemma (6.1). Let & be a form of degree p on an almost complex manifold
M.

(i) Suppose & has degree 2. Then & has bidegree (1,1) if and only if
EUX,JY) =&X.,Y) forall X,Y e Z(M).

(i) & is the sum of forms of bidegrees (p,0) and (0, p) if and only if
EUX,JY X, -, X)=—8X, Y, X,,---, X)) forall X, Y, X,,- -+, X, e ¥(M).

The proof is easy and we omit it.

Let A7¢(M) denote the complex differential forms of bidegree (p, q) on M,
and H?(M) the space of real harmonic forms of degree p. We set

H?4(M) = (H?**(M) ® C) N A»4M) .

It is known that if M is a Kdhler manifold, then H*'(M) is 1-dimensional if M
has positive sectional curvature [7] (or positive holomorphic bisectional
curvature [9]). For nearly Kdhler manifolds we have the following result.

Theorem (6.2). Let M be a compact non-Kihler nearly Kihler manifold
such that the sectional curvature K is positive and the holomorphic bisectional
curvature B is nonnegative. Then H>'(M) = 0 .

Proof. Let & be a form of bidegree (1,1) on M; then £(JX,JY) =
&X,Y) for all X,Y ¢ Z(M). Without loss of generality we may assume
that & is real. According to [7] there exists a local orthonormal frame field
{E, ---,E,,JE,, ---,JE,} such that §(E;,JE;) = Ofor i + j.

In order to simplify the proof, we now introduce some classical tensor
notation. We use the index convention that 1 < i,j,k,/<nand 1 < «,8,7,8
< 2n. Also we set JE, = E,. so that n 4+ 1 < i*, j*, k*, I* < 2n. Define

Ea,a = S(Eaa Eﬁ) 5 Dap = VE.,(J)(E,&) »
RﬂﬁTﬁ = <REaE‘5Er7 E§> ? Raﬁ = k(Eanﬁ) E
1
F) = 2, Roulo, — = 2. R asbss -
@ B,r 2 87,8

1t is well known that if & is harmonic and F(§) > 0, then F(§) = 0 and £ is
parallel. We have

F(E) = 2 Z {(RIJEJ + Rij*ijt)giitz — Rii‘jj"&ii‘&jjt}
=2 T Ruvsplin — 30 + 2uslF G + £150} -

Since Ry 5 > 0 for all i and j, it follows that F(£) > 0. Assume that & is
harmonic; then £ is parallel and F(§) = 0. Hence

(10) Rignjpl€ie — §550) + 2lloy*(€® + €507 = 0

for all i and j.
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We wish to show that &, = O for all i. There are two cases.

Case 1. - There exists j such that ¢;; == 0. Then (10) implies immediately
that &;;. = 0.

Case 2. For all j we have ¢;; = 0. Then

Ripjpo = Rijiy + Ryjuie > 0.

Hence from (10) it follows that &;,. = &;,. for all j. By assumption M is not
Kihlerian, and so for some j and X, ¢;, = 0. By Case 1 we have &,,, = 0.
Therefore &,;, = 0. This completes the proof of the theorem.

We remark that a slightly stronger result than Theorem (6.2) holds. Instead
of assuming that M has positive sectional curvature, it is only necessary to
suppose that K, + K, ;, > O for linearly independent x, i, Jx, Ju.

A modification of the proof of Theorem (6.2) also yields the following result.

Theorem (6.3). Let M be a (compact) nearly Kihler manifold with
nonnegative holomorphic bisectional curvature. Also, assume that K ;,, + K, ;,
> 0 for linearly independent x,u,Jx,Ju. Then dim H-'(M) =1 if M is
Kiihlerian, and H-'(M) = 0 if M is not Kihlerian.

Furthermore we have the following theorem on holomorphic pinching.

Theorem (6.4). Suppose M is a (compact) nearly Kdhler manifold which
satisfies condition T(p, o) with ¢ > 0, and assume M has holomorphic pinching
d > (1 + o). Then dim H*(M) = 1 if M is Kidhlerian, and H>*(M) = 0 if
M is not Kihlerian.

Proof. This follows from Corollary (4.9) and Theorem (6.3).

7. Holomorphic forms on nearly Kihler manifolds

It is well known that a compact Kihler manifold with positive Ricci
curvature has no holomorphic p-forms. In this section we give a generalization
of this result to nearly K#hler manifolds. Where it is convenient, we use the
notation of § 6.

. Theorem (7.1). Suppose M is a (compact) nearly Kihler manifold of
pointwise constant type whose Ricci curvature k satisfies

k(x,x) > 3(p — DIF DO

for x,y e M, with ||x|| =|y|l=1and {x,y>=<{Jx,yy)=0forall me M. Then
H»(M) = H>*(M) = 0 for p > O.

Proof.  Let & be a real harmonic form which is the sum of complex forms
of bidegrees (p, 0) and (0, p). It suffices to prove that & = 0. Let

F(S) — Z Raﬁsmg...aps,aag...ap - %(P - 1) Z Ra,erasagas...apfr,sas...ap
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We show that F(§) > 0. Assume the Ricci curvature is diagonalized with
respect to the frame field {E,, - - -, E,, JE,, - - -, JE,}. Then, by Lemma (6.1),

A= Ry + Ri*i*)(gijag---apz + Eij*as...apz)
=25 Rii(&jas...,,pz + Eij*as...,,pz) .

Next we calculate B. We have by Lemmas (2.1) and (6.1) that

B=2 Z {(Rijkl - Rijk'[*)éija;...apEklas...,,p
+ 2(Rijk*l + Rijkl*)éijas...apgkxzas...ap
+ (Ri*jkﬂ + Ri*jkl*)Ei*jas--.apE}.:*las...ap}
=2 Z HZ,: (Eija;-uap%‘j + Eiajas...ap%*j)uz
ag,c+ap 1,
<2 X Zj Eitegra’ T EioagapDl@is I -
ag,+sap T,

Hence
F > 5 (2Ri — 0 — D@5l jagrray’ + Eisragerrag?) = 0 -

Therefore F(&) = 0 and we conclude that £ = 0. Hence H?-°(M) = H%?(M) = 0.

Theorem (7.2). Suppose M is a (compact) nearly Kihler manifold of
pointwise constant type «. Also, assume that M has holomorphic pinching &
such that

5> n—DRae+ 1)
6(n — Da +3n+1
n—Da+n—3
(n — DGa + 2)

where dim M = 2n. Then H»'"(M) = H%?(M) = 0O for p > 0.

Proof. This follows from Proposition (4.12) and Theorem (7.1).

We now prove that under certain conditions the second cohomology group
of M vanishes. We first note that the function F used in § 6 and § 7 is actually
a quadratic form. The symmetric bilinear form associated with F is given on
forms of degree 2 by the formula

(1 1) F(7]> E) = 2 § Raﬂnaréﬁr - ﬁZ: aRaﬂrﬁnaﬂEﬁ *
ay Byt ayBata

fn<s,

a>

ifn>5,

Proposition (7.3). Suppose M is an almost Hermitian manifold with the
property that (R ;,;.0y,J2> = (R,,¥, 2> for all tangent vectors w,x,y,z. Let
7 be a differential form of bidegree (1,1) and & a differential form which is
the sum of forms of bidegree (2,0) and (0, 2). Then F(», &) = 0.

Proof. As usual we normalize » so that y,, = O for & = i*. It is then easy
to verify that each of the sums in the right hand side of (11) vanishes.
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The next two theorems are generalizations of results of [7].
Theorem (7.4). Suppose that M is a compact nearly Kihler manifold of
pointwise constant type «, and that the sectional curvature K of M satisfies

(12) K> a,

where 2n — dim M, Then dim H*(M, R) = 1 if M is Kihlerian, and H (M, R)
= 0 otherwise.

Proof. Assume M is not Kdhlerian, and let w be a harmonic form of degree
2. We may write @ = 5 + &, where 5 is of bidegree (1, 1) and £ is a sum of
forms of bidegrees (0,2) and (2,0). Now (12) implies the hypotheses of
Theorems (6.3) and (7.1) are satisfied. Even though » and § may not be
harmonic, from the proofs of these two theorems we have F() > 0 and F(%)
> 0. Hence by Proposition (7.3),

F(o) = F(p) + F(§) + 2F(5,8) = F(p) + F(§) > 0.

We conclude that F(w) = 0 and so F(y) = F(§) = 0. Just as in the proofs of
Theorems (6.3) and (7.1) we find that y = £ = 0, and so 0w = 0.
A modification of the proof of Theorem (7.4) yields the following result.
Theorem (7.5). Suppose M is a compact nearly Kihler manifold of
pointwise constant type o« > 0. If M has holomorphicp inching 6 > (1 + o),
then dim H*(M, R) = 1 for Kihlerian M, and H* (M, R) = 0 otherwise.

8. Einstein nearly Kihler manifolds of positive sectional curvature

Theorem (8.1). Let M be a compact Einstein nearly Kdihler manifold of
pointwise constant type. If M has positive sectional curvature and nonnegative
holomorphic bisectional curvature, then M is isometric either to complex
projective space or to 5°.

Since the proof is lengthy, we divide it into several lemmas. We shall
frequently use the classical tensor notation of § 6; furthermore we continue to
use the same index conventions. Our proof is patterned after the corresponding
theorem for Kihler manifolds as given in [9].

Lemma (8.2). Let M be an Einstein almost Hermitian manifold with
R;; = 2g;;. Then

(13) 3 L VIR = Zﬁ (Ruars® — Rueas® — RuatsRisares) + ARipuiin -

This lemma is a special case of a formula of Berger in the Riemannian case
[3, Lemma (6.2)]; the Riemann curvature tensors in Berger’s paper differ
from ours in sign.

Throughout the rest of this section, M will be a nearly Kéhler manifold.
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Furthermore we henceforth assume that a local orthonormal frame field
{E., «++,E,, JE,, - -, JE,} has been chosen so that R,,.;, = O for a  i*. This
choice is possible for nearly Kahler manifolds because the 2-form « defined by

ay(Y,2) = <RXJXY, Z> X,Y,ZecZM)

is of bidegree (1, 1) by equation (2), and because of Corollary (4.5). Denote
by Q, the right hand side of (13), and let H, = R,,.;;..
Lemma (8.3). We have

0, > §z {H1R11tz’z‘n — 2Ry + 2|]‘P1i”2H1 - 2”‘/’11'“4}

(14) 2 2
—429,Z< ; Koo 0350" + L@uos 01520} -

Proof. From Lemma (8.2) it follows that

Q1 + H% - 'ZH1 + 2 ; Ru*ii*z

i 2 2 2 2
- E {Rlil‘j + Rlil‘j‘ + Rli‘l"j + Rlizl‘j' - Rlille*il*j
%,722

- Rlilj‘Rl‘il‘j‘ - Rli*lle'i"l*j - Rli‘lj‘Rl*i*l‘j‘}
= _Zéz {Kuss @100 — Ryl + 2Ry5 pRusny; + @riws 0150 — Ryynyy)’
%,

+ ou» 1) — Rlilj)2 - 2R1i1jR1it1jt + (<(/Jm, Oy — lej.)z}
= Zzz {(Rlilj' + Ru'qj)z + (ij - Rli'lj*)z + 2<501ia (/31j>2 + 2<(Pm Sl’1j~>2

7
- 2<(P1z'a (/J1j>(R1z'1j + lejv) - 2<(Pm (P1j*>(R1i1j' - lej)}
> —2i ;L; {Kp1s 010" + <1is 91500" + {Pra> @10 Runs; + {@ros @1y Rupsigo}

=2 iJZ22 Ko 010" + {ou5 (Plj*>2} :

Since A = H, + 2 Ry + 2 3, |y, the lemma follows.
122 22

Lemma (8.4). Let M be a nearly Kdhler Einstein manifold of (pointwise)
constant type and nonnegative holomorphic bisectional curvature. Assunie
that the holomorphic sectional curvature H assumes its maximum on
M at a unit vector x e M,,, and that the local orthonormal frame field
{E,---,E,,JE, ---,JE,} is chosen so that H = H(x). Then fori=2, ---,n,
we have

(15) Q= H(PlinRll‘ii" = H, — 2R, sy;. — “5011'“2 =0.

Proof. Since H, is a maximum for H we have Q, < 0. Because M is of
constant type the last sum in equation (14) vanishes. Therefore by Lemma
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(8.3) and Corollary (3.2) we have
Q1 = §2 {(Ru*ii* + 2H€01iHZ)(H1 — 2R11*ii* - ”%i“z)
+ SHSDIZ'HZRII*H*} >0.

(16)

Hence Q, = 0. The rest of (15) then follows from Corollary (3.2) and equation
16).

The following lemma generalizes a formula of [3].

Lemma (8.5). Let M be a nearly Kdhler manifold of real dimension 2n.
Then at each point m e M we have

n(n 4 1) _ _ A
17) ey f H)dx = R(m) — 6 3 |7 5, (DE) .

where V(S™™Y) is the volume of the unit sphere of dimension 2n — 1, dx is
the canonical measure in the unit sphere S, of the tangent space M, and
R(m) is the Ricci scalar curvature of M at m.

Proof. Let {e,, ---,e,,Je,---,Je,} be a frame at m. Then for xe M,
write x = 27 (a;e, + b,Je;). A calculation shows that

H(x) = Z (af + DD’Risrsss + 2 E,f (aiby + @bD(R;ji5 + Rijinse)
+2 Z (@ + DR jorpe — Rigoing) + 21_% (@ + bD(a} + DDR e
+ (terms with at least one odd exponent) .

Now we have

—(#)),

V(SZn 1) f = 4n(n + 1) ’ V(SZ" 1) f - 4n ( + 1)

and similarly for b3, b3b% (i + j), and ajb?%. Thus

i VY

1 . _ "
stmH(x) dx - (—m‘{z Rzz*u* i;j ||§0i,1||

+ Z (szi] + Rz]*z]* + Rzi*n*)}

i<J

=D R =6 Dl

Proof of Theorem (8.1). Since M is a nearly Kahler manifold of pointwise
constant type, ||¢;; |’ = ||, | for all i,j, k, [ with i = j, k 5= [. By assumption
M is compact and so the holomorphic sectional curvature' H does, in fact,
assume its maximum. Thus (15) holds, and so we have two cases.
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Case 1. | ¢;;|? = O for all { and j. Then just as in [9] we find that M is
isometric to complex projective space.

Case 2. | ¢;;|f > O for all { = j. From (15) it follows that R,.;;, = O for
i > 2 and that H, = ||¢;, | for i # j. Furthermore, we have 1 = 2rn — 1)H,
and R = 2n(2n — 1)H,. On the other hand by Lemma (8.5) we have at any
point m € M that

et D) [H@ dx = ren = 1) = 301 — D}, = nin + DA,
V(szn 1) 4

Therefore H(x) = H, for all x e M,,, that is, M has constant holomorphic

curvature H,. Furthermore for unit vectors x,u e M,, with {(x,u> = 0, we

have by Proposition (3.4) that

Ko = 01+ 300,09 + 2P0

- %(1 + 3%, u>) + %(1 — {Ux,w9H, = H, .

Hence M has constant curvature. Since M is orientable, M is isometric to a
sphere. In fact, M is isometric to $°, because S° is the only sphere possessing
a non-Kahlerian almost complex structure.

An examination of the proof of Theorem (8.1) shows that actually a slightly
stronger result holds. We state this as follows.

Theorem (8.6). Let M be a compact Einstein nearly Kiihler manifold of
pointwise constant type with nonnegative holomorphic bisectional curvature.
If M has the property that K, + K, > O for linearly independent x, Jx,y, ]y,
then M is isometric either to complex projective space or to S°.

We also have the following results.

Theorem (8.7). Let M be a compact Einstein nearly Kihler manifold of
global constant type a, and assume M has holomorphic pinching 6 > (1 + a).
Then M is isometric either to complex projective space or to $°.

Proof. This follows from Corollary (4.9) and Theorem (8.6).

Theorem (8.8). Let M be a compact nearly Kihler manifold with non-
negative holomorphic bisectional curvature, pointwise constant holomorphic
curvature p > 0 and pointwise constant type a. Assume also that M has
nonnegative holomorphic bisectional curvature. Then M is isometric either
to complex projective space or to S°.

Proof. By Proposition (3.6) M is Einsteinian, and by Proposition (3.4) the
sectional curvature of M is positive. Hence Theorem (8.8) follows from
Theorem (8.1).

Theorems (8.6), (8.7), and (8.8) generalize results of [3] and [9].
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9, The Chern classes of a nearly Kdhler manifold

A well known theorem of Chern states that if @, is the matrix of (complex)
curvature forms of a compact Kihler manifold M, then det(5,,— @,/ (2zv/ — 1))
is the sum of differential forms which represent via de Rham’s theorem the
Chern classes of M. For example, see [16, p. 307]. In this section we find
differential forms which represent the Chern classes of any compact almost
Hermitian manifold M. In the case when M is nearly Kahlerian, these formulas
simplify slightly.

Theorem (9.1). Let M be a compact almost Hermitian manifold with
Riemannian connection V and curvature operator Ry (X,Y ¢ Z(M)). Define
a tensor field S of type (1,3) by

SwxY,Zy = 3RyxY,Zy + 3Ry IY,1Z> + 1T w(DX),V(INZ)>
— +<FwlUND), 7V x Y

for W, X, Y, ZeZMYRC. If {E,,---,E,,JE, ---,JE,} is a local frame
field on M, set

5 /X,Y) = (SxpE Ep> — ¥ —1{SxyE;, JE)>

for X,YeZM)®C and 1 < i,j< n. Then det(3,; — 5;/(2uy/ —1)) is
globally defined, and via de Rham’s theorem it represents the total Chern
class of M.

Proof. We define a new connection D onM by D, Y = (VY — IV JY).
Then Dy(J)(Y) = 0, and so D is a Hermitian connection in the sense of [16,
p- 178] on the tangent bundle (M) of M, where (M) is viewed as a complex
vector bundle on M. A calculation shows that § is the curvature operator
determined by D, i.e., Syy = Dix,y1 — [Dy,Dy] for X, Y € £(M). Then the
matrix (&,;) is the curvature matrix defined by D on the complex vector bundle
(M). Theorem (9.1) now follows from [16, Theorem 3.1, p. 307].

Corollary (9.2). If M is a compact nearly Kihler manifold, then the total

Chern class is det (3;; — £,;;/2ev/ —1)) where
Eij(Xa Y) = <SXYE2‘7 E;> - _1<SXYE'L'7 JEj> >
(Swx¥sZy = Ryx ¥, Zy — 1P, P2
+ 1 FwDXY), Vx(UNZD)y — 1 <FwINZ), ¥V x(UNY)) ,

for W, X, Y, ZeZM) KC.
Corollary (9.3). If M is a compact nearly Kihler manifold, then the first
Chern class y, of M is given by

nX ) = == 5 (ReEL IED — 2 F2DED, Iy (DE)
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for X,Y e Z(M), where {E,, ---,E,,JFE,, ---,JE,} is a local frame field on
M. Hence, for X e (M),

20X, 9X) = KX X) + 2 3 P OEF

10. Immersions of nearly Kihler manifolds

Recall [10] that an almost Hermitian manifold is said to be quasi-Kdihlerian
provided that Vy(N(Y) + V(DY) =0 for all X,Y ¢ £(M). A nearly
Kihler manifold is quasi-Kahlerian [10]. Furthermore in [10] it is shown that
an almost Hermitian submanifold M of a quasi-Kihlerian (nearly Kéhlerian)
manifold M is itself quasi-Kdhlerian (nearly Kihlerian) and is a minimal
variety. Moreover, the following is true.

Proposition (10.1). Let M be an almost Hermitian submanifold of M, and
denote by B and B the respective holomorphic bisectional curvatures. If M is
quasi-Kdihlerian, then Byy < Byy for all X, Y ¢ Z(M).

Proof. Let T denote the configuration tensor of M in M (see [10]). Then
[10] we have TyY + T,,JY = 0 for all X,Y ¢ & (M). The Gauss equation
[10] asserts that, for W, X,Y,Z e (M),

where Ryy and Ry, are the curvature operators of M and M respectively.
From the Gauss equation it follows that

(RysxY, JYY — (Rysx Y, JYS = (TyY, T, JY> — (TLJY, T,4Y>
= —|TxY|P — | TLIY|* .

Hence the proposition follows. .

This generalizes a result of [9]. Next we generalize two theorems of
F. Frankel [8] to nearly K#hler manifolds (see also [9]).

Theorem (10.2). Let M be a compact connected nearly Kihler manifold
whose sectional curvature satisfies

forall x,ye M, with ||x||=|ly|=1and {x,y> = {Jx,y> =0 forallme M.
If V and W are compact almost Hermitian submanifolds of M such that
dim V + dim W > dim M, then V and W have a nonempty intersection.

Proof. Assume that V' N W is empty. Let ¢ be a unit speed shortest geodesic
from ¥ to W. Assume that ¢ is defined on [0, b], and let ¢(0) = p ¢ V and
a(b) = g « W. Since the first variation of arc length vanishes at ¢, it follows
that ¢’(0) is normal to V at p and ¢’(b) is normal to W at q.
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Since dim V' + dim W > dim M, there exists a vector field X ¢ £'(M) which
is parallel along ¢ and tangent to both I and W at p and g, respectively. Then
JX, although it may not be parallel along o, is tangent to both ¥ and W at p
and g, respectively. Furthermore <X, ¢’">(1) = <JX,¢">(t) = 0 for 0 < r < b.

Let S and T denote the configuration tensors of ¥V and W. The second
variation of arc length with respect to the infinitesimal variations X and JX is
given as follows.

LU0) = {TxX,a">(b) — (SxX, ' O) — f "Ry X, oS0t

LYHO) = <TpxdX, o)) — <SuzdX,0)
+ [(UP08 - R IX, )@ di

We have

LYO) + L = [ (7. DO ~ Kxpr + Ko IX [0 di < 0.

Hence at least-one of L%(0) and L’/,(0) is negative. This contradicts the
assumption that ¢ is a shortest geodesic from ¥ to W. Hence the theorem
follows.

The above proof is patterned after the corresponding result for K#hler
manifolds as proved in [9].

Theorem (10.3). Let N be a compact nearly Kihler manifold whose
sectional curvature satisfies (18). Then every holomorphic correspondence of
N has a fixed point.

Proof. We set M = N X N, V = diagonal (N X N), and let W be the
holomorphic correspondence (which is just an almost Hermitian submanifold
of N X N). We must modify the proof of Theorem (10.2) in order to show
that 7 and W intersect. "

Suppose V' N W is empty. Clearly the proof of Theorem (10.2) will carry
over provided we can show the sectional curvature of N X N satisfies (18) at
some point of ¢. Consider the vector fields ¢/, X and JX defined along o.
Write

o/ =dPd,, X=X,®X,, IX=IX.DIX,,

where ¢}, X,, JX, are tangent to the first factor of N X N and ¢}, X,, JX, are
tangent to the second factor. Now ¢ is normal to V/, and X and JX are tangent
to V for t = 0. Hence we have '

a0 = —a0), X0 =X,0, JX,(0) =JX,0) .
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It follows that ¢((0), ¢5(0), X,(0), X,(0), JX,(0), JX,(0) are all nonzero.
Therefore for t = 0 we have

KXa’ + KJXa’ > KXIal' + KJXlal’ > 0 .

Thus the proof is complete.

In [11] we proved that S° with the usual almost complex structure has no
4-dimensional almost complex submanifolds. A generalization of this is proved
in [13]. We now give another generalization, this time for nearly Kihler
manifolds of constant type. First we prove a lemma.

Lemma (10.4). Let M be a nearly Kihler manifold, and M an almost
Hermitian submanifold with d&imM — dimM = 2. Denote by T the
configuration tensor of M in M. Then for each m e M there exists x e M,
with ||x|| = 1 such that T;y = O for all y e M, with {x,y> = {Jx,y> = 0.

Proof. I T,x = O for all x e M, the lemma is clear. Otherwise, let x be
the point on the unit sphere of M,, at which the function y — || T, y|* assumes
its maximum. Since the first derivative of y — || T,y |* vanishes at x, we have
{Tx, Ty>={Tx,TJy> =0 whenever {x,y> = {Jx,y)> = 0. Furthermore,
let u = %(x + Jx). Then T,u = JT x, and so y — ||T,y|* also achieves

Ve

its maximum on the unit sphere at u. Hence

0 = (Tou, Ty> = Tl—z (T, Ty + Ty .
Replacing y by Jy in this equation and subtracting the result we obtain
ITx, Tyy = {JT,x, T Jy> = 0. Thus T,y and T,Jy are perpendicular to
both T.x and JT  x. Since T, x and JT . x span M;., we have T y=T_,Jy=0.

Theorem (10.5). Let M be a non-Kihler nearly Kihler manifold of point-
wise constant type, and M an almost Hermitian submanifold of M which is
Kihlerian. Then dim M < dim M — 4.

Proof. Assume dim M = dim M — 2. By Lemma (10.4) for each me M
there exists x e M,, such that T,y = O for all y e M,, with {(x,y> = {Ux,y)>
= 0. This implies that |7 ()| = |V ()| = 0, which is impossible.
Hence the theorem follows. .

In [14] we proved that any 6-dimensional nearly Kahler manifold which is a
submanifold of R®, and whose almost complex structure is derived from a
3-fold vector cross product on R? has pointwise constant type. Thus Theorem
(10.5) applies to these manifolds.

The next theorem, in contrast to Theorem (10.5) and the results of [11] and
[13], shows that in different circumstances Kihler manifolds arise quite
frequently as almost Hermitian submanifolds of nearly K#hler manifolds.

Theorem (10.6). Let M be a nearly Kihler manifold. For each m e M set

A (m) = {xe M, |V (D) =0 for all yeM,}.
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Then on any open subset of M on which dim % (m) is constant, the distribution
m — XA (m) is integrable.” Furthermore the integral submanifolds are Kihler
submanifolds of M.

Proof. Let W and X be vector fields which at each point lie in the
distribution m — #'(m). We have, for Y, Z ¢ (M),

<V[W,X](J)(Y)> Z> - <RWX(J)(Y)> Z> + <[[VWa VX]: J]Y; Z>
=Ry Y, Z> + {RyxY,IZ>
= FuwUNX), Viv(N(2D)) =0.
Hence [W, X] lies in the distribution m — ' (m). Therefore, by the Frobenius
theorem, it follows that m — #"(m) is integrable on open sets of M on which
dim " (sn) is constant.

Let M’ be an integral submanifold of m — 2¢"(m). Then M’ is a Riemannian
submanifold of M, and it also is easy to verify that M’ is an almost complex
submanifold of M. Denote by & and ¢ the connection and configuration tensor
of M’. For m e M’ and x,y ¢ M., (=2¢"(m)) we have

0=V (DO =6, DD0O) + t.Jy — Ity .

Hence §.(J)(¥) = 0, and so M’ is K#hlerian.
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